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Abstract 
A series of wind tunnel tests were conducted in the NASA Langley Research Center as part of an ongoing effort 

to develop and test mathematical models for aircraft rigid-body aerodynamics in nonlinear unsteady flight regimes. 
Analysis of measurement accuracy, especially for nonlinear dynamic systems that may exhibit complicated 
behaviors, is an essential component of this ongoing effort. In this paper, tools for harmonic analysis of dynamic 
data and assessing measurement accuracy are presented. A linear aerodynamic model is assumed that is 
appropriate for conventional forced-oscillation experiments, although more general models can be used with these 
tools. Application of the tools to experimental data is demonstrated and results indicate the levels of uncertainty in 
output measurements that can arise from experimental setup, calibration procedures, mechanical limitations, and 
input errors. 

Introduction measured outputs and accuracy of parameter estimates 
are presented. Application of the tools to both repeated 
and ensemble-averaged experimental data is 
demonstrated. In this analysis, a linear aerodynamic 
model appropriate for conventional forced-oscillation 
experiments is assumed although more general 
aerodynamic models can also be used with the tools 
presented. 

A concern in any scientific experiment is the issue of 
obtaining sufficient measurement accuracy. In particular, 
it is a concern when investigating nonlinear dynamic 
systems since these systems can exhibit behaviors that 
may substantially complicate responses and model 
identification. For these experiments the amount of care 
taken in both experiment design and measurement 
procedures will be reflected in the final measurement 
accuracy. Two approaches can be used to estimate 
measurement accuracy. One approach is to use repeated 
measurements that allow a statistical estimate of the 
measurement variance to be made. This approach can be 
costly and time consuming in some cases; however, it 
has the advantage of directly reflecting measurement 
uncertainty. Another approach, based on system 
identification theory, is to utilize the difference between 
measured responses and that predicted by an adequate 
model. The advantage in this case is that repeated 
measurements are not required, although the presence of 
any modeling error will increase the residual error. Both 
approaches are presented and compared in this paper. 

In an effort to obtain a more general formulation of 
the aerodynamic model for aircraft, a series of wind 
tunnel tests were conducted in the NASA Langley 
Research Center (LaRC) 12-Foot Low-Speed Tunnel 
using a 10% scale model of the F-16XL. Two of 
tunnel tests, conducted in 1996 and 2000, provided 
static and dynamic data for nonlinear modeling 
research. Initial studies identifying unsteady 
aerodynamic models from these data were reported in 
Refs. [1]-[3]. During both the 1996 and 2000 
experiments, for certain test conditions and signals, 
forced oscillation measurements did not reflect the 
expected harmonic motion related to the input signal. 
Single-run time histories and ensemble-averaged time 
histories were used to determine the final experimental 
results, namely, non-dimensional static forces, static 
moments, and stability derivatives. Combinations of 
stability derivatives were estimated in the 
conventional form of in-phase and out-of-phase 
components. No evaluation of the measurement data 
(before averaging) was done to test repeatability of the 
1996 data. During the 2000 experiment, to reduce 

For the latter approach, a method is presented for 
harmonic analysis utilizing the least squares principle. In 
this approach, tools for assessing both accuracy of 
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The tests were conducted at a dynamic pressure of 
192 Pa (= 4 psf) producing an equivalent wind speed 
of V=17.52 m/sec and a Reynolds number of 106 
based on the mean aerodynamic chord. During 
dynamic tests, pitch angle readings were made with a 
Linear Variable Differential Transformer (LVDT), 
six-component force and moment data were obtained 
from a strain-gauge balance, and wind tunnel dynamic 
pressure measurements were obtained from pressure 
transducer.  

ensemble average errors and to enhance measurement 
accuracy analysis, each test was repeated 10 times. As 
part of a review process for these experiments, an initial 
evaluation of measurement accuracy for the 2000 
experiment has been done and is presented in this paper.  

Many problems that occur in testing can be quickly 
removed through careful monitoring by test engineers. 
However, in modern test facilities there is always a 
desire to automate systems to achieve greater production 
with fewer errors.  This may tend to remove the test 
engineer from close observation of the experiment. Also, 
some measurement error may not be immediately 
observable without analysis. In any case, data with 
greater error than desired may be produced even when 
experimentalists exercise significant care. In this paper, 
examples of problem data that can occur during testing 
are provided and then procedures to reduce these 
problems, in an automated testing environment, are 
suggested.  

For the 2000 experiment, data from single-
frequency forced oscillation in pitch were obtained at 
5 different frequencies (0.5, 0.9, 1.1, 1.5, and 2.0 Hz) 
and 13 different values of the initial angle of attack 
(α0 = 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 
60 degrees) with amplitude of ±5°. Repeated runs 
were made at the same test conditions and ensemble 
averages over the repeated runs were computed. 

 
The uncertainty of an experimental measurement is a 

combination of bias error and precision error. The 
squared sum of these terms is often used although other 
formulations are sometimes used4. In order to eliminate 
systematic errors or bias errors, careful calibration and 
attention to environmental variables are required. Bias 
errors can be difficult and in some cases impossible to 
estimate and remove from the data after the experiment 
is performed. Therefore in this paper only precision of 
the output measurements and estimated parameters will 
be evaluated. Also, no attempt is made to separate 
contributions to uncertainty from other factors such as 
scale effects or wind-tunnel turbulence. Since rigid body 
dynamics are assumed for this work and the dynamic rig 
is assumed to be rigid, aeroelastic or structural responses 
of the scale model and dynamic rig are not investigated. 

Theoretical Tools 
Analysis and evaluation methods, metrics to assess 

measurement accuracy, and procedures that may help 
to identify and reduce measurement error are offered 
in this paper as a means of improving final 
experimental results. In this section, the main tools for 
analysis and evaluation are presented. First, a method 
for harmonic analysis that facilitates computation of 
higher harmonics and parameter error bounds is 
presented. This method effectively provides a test to 
detect nonlinear responses when nonzero high-order 
harmonics exist. Second, a conventional linear 
aerodynamic model representing a single degree of 
freedom forced-oscillation experiment is presented. 
Third, key metrics for assessing measurement 
accuracy are provided. 

In this paper, measured data are presented that have 
been obtained from single frequency forced-oscillation 
tests in the LaRC 12-Foot Tunnel. Analysis is limited to 
small amplitude dynamic data in order to limit nonlinear 
responses contained in the measurements. The approach 
for harmonic analysis described in this paper facilitates 
testing this assumption as part of the analysis.  

Measurement error, e, is generally assumed to be a 
zero mean, normally distributed, stochastic process 
with variance, σ2. Measurement, z, true value, y, and 
error, e are related as 

                               eyz += .                          (1) 
In this case, E[z] = y and E [(z-y)2] = σ2. Since the 
true value, y, is unknown and unknowable, a model is 
usually identified that provides estimates of the 
responses as . Using the model estimates of 
response, the measurement equation becomes 

ŷ

 
Model and Tests 

A three-dimensional view of the 10% scale F-16XL 
model is shown in Fig. 1. Dynamic tests were conducted 
in the LaRC 12-Foot Low-Speed Tunnel. For these tests, 
the model was mounted on a dynamic test rig through a 
six-component strain-gauge balance.  The dynamic test 
rig is a computer controlled hydraulically actuated 
system that was sting-mounted on a C-strut support 
system.  The mounting arrangement rotated the model 
about the reference center of gravity location of 0.558 c . 
Further description of the dynamic test rig may be found 
in Ref. [5].   

      ε+= yz ˆ .  
In this case, E[ε 2] does not equal σ2 since the model 
estimate  may contain error contributions from 
several sources. In addition to measurement error, the 
model may be inadequate to predict the responses. For 
example, if the inputs produce nonlinear responses a 
linear model will be inadequate and predict responses 
with additional errors. The analysis method suggested 

ŷ
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in this paper offers an approach that can detect this 
problem. 

From (6) and (7), the estimates of parameter 
variance are 
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Conventional Forced Oscillation Analysis where 
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During conventional forced-oscillation tests the 

model is assumed to undergo periodic motion. In this 
study only small amplitude motions are considered so 
linear responses are expected. For analysis of this 
conventional oscillatory data it is assumed that the 
aerodynamic coefficients are linear functions of angle 
of attack, pitching velocity and their rates. Then the 
increment in the lift coefficient with respect to its 
mean value can be formulated as 

The parameters  and b  are the Fourier 
coefficients obtained from the measured data by 
applying the least squares principle 
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time versions of (5). Therefore, the in-phase and out-of-
phase components can be also expressed as  
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Evaluation Metrics and Outlier Rejection Rules 

The Multiple Correlation Coefficient (R2), expressed 
in (10), may be computed as part of the parameter 
estimation process.  This metric varies between 0 and 1 
and provides a measure of model adequacy. As the 
output signal fails to be represented by the model, the R2 
term will be reduced from 1. 

Mean square error (s2) defined in (7) characterizes 
the fit error of the model. A check to determine how well 
this metric reflects measurement accuracy can be made if 
repeated measurements are available. Calculation of the 
variance from repeated measurements provides a direct 
estimate of measurement accuracy. The variance can be 
computed from repeated measurements at each point in 
time as 

    ( )22

1

1( ( )) [ ( )] ( )
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where Nr is the number of repeated runs, Ca (ti) is a 
measured value of an aerodynamic coefficient at time ti, 
and aC  is the mean value of Ca for the repeated runs. 
From these results an equivalent fit error, comparable to 
(7), can be computed as 

  2 1
i

i

2s s
N

= ∑ .                             (21) 

Comparison of s2, computed from harmonic analysis (7), 
with the variance computed from repeated measurements 
(20)-(21) provides an indication of the level of 
measurement accuracy and an indication of good model 
adequacy if the two metrics are close in value.  

During execution of an experiment, occasionally data 
points are obtained that appear to be outliers. If the 
experimentalist can determine verifiable problems with 
those points, then clearly these points should be 
removed. However, in some cases the results are not 
clearly wrong and no obvious problem can be found. 
Points outside the 2σ bound might be good candidates 
that should be checked for problems. Statistical methods 
to check results can be easily automated so these tests 
can be used frequently. Among the various statistical 
methods, Chauvenet’s Criterion4 is used in this paper. 

  
Data Evaluation and Analysis 

Evaluation and analysis methods proposed in this 
study are suggested as a method to assess measurement 

accuracy. In this paper, the methodology has been 
applied as part of a data post-processing procedure; 
however, some calculations may be done during the 
experiment for a faster on-line assessment. This 
section demonstrates application of the analysis 
methods to sample data from the 2000 experiment.  

 
Timing Signal 

The first data check for dynamic tests should be to 
determine the accuracy of the time stamp and then the 
sample time fidelity. Accuracy of the time stamp may 
be an important issue when a large number of signals 
are measured. Time stamp accuracy was not an issue 
for this study. Checking fidelity of the sample time 
during each duty cycle is a key test for dynamic 
experiments, especially when the analysis involves 
mathematical transforms. Commonly used transform 
algorithms require the sample time to be in equal time 
intervals. If a personal computer (PC) or workstation 
is used to run the real-time experiment, it is not 
uncommon for the operating system to introduce 
delays (from multitasking) in the duty cycle and thus 
produce uneven sample time intervals. If this type of 
error exists, it may require the data to be re-sampled or 
the experiment re-run depending on the degree of 
error. Re-sampling the data assumes that in spite of the 
duty cycle error, the measurements and the associated 
time stamp are still correct. If large delays or variable 
delays exist between the time stamp and measurement, 
then clearly no analysis would be possible. Fidelity of 
the sample time and accuracy of the time stamp must 
be ensured before any analysis is done.  

A simple test metric to assess the degree of this 
problem is to compute the time difference, δta, 
between samples n and n+1. δta is defined as 

  
1

a a
a nt t tδ + n= −            (22) 

where “a” indicates actual sample times. For 100 Hz 
sample rate, a graph of δta vs. sample number index 
should always equal 0.01 seconds for perfect sample 
timing. Another helpful sample-time metric is defined 
as the time difference between actual measured time 
and expected clock time or simulated time, both at 
sample n. δts is defined as 

a s
s n nt t tδ = −            (23) 

where “s” indicates expected clock time or simulated 
time. This metric reflects the cumulative delay 
experienced during the run. Consequently, as delays 
occur this metric will grow in magnitude and indicate 
the total delay for the whole run at the last index 
value. 

These two metrics (22) and (23) could be easily 
added to testing software to ensure high-fidelity 
sample times. 
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An example highlights some of the issues associated 
with checking sample time fidelity. Analysis of the 2000 
data revealed some cases where sampling was not 
occurring at 100 Hz as expected. As desktop computers 
and workstations have become very fast it has become 
popular to use these machines to run experiments and 
real-time simulations. Although the operating system 
was required to give the highest priority to the 
experimental task, duty cycle slips likely occurred due to 
multi-user, multi-tasking, or system level service. Fig. 2 
(a) depicts the proper timing signal and duty cycle and 
Fig. 2 (b) depicts the timing problem when a duty cycle 
slip or frame overrun occurs. Fig. 2 (b) also shows 
another anomaly, unique to this experiment, i.e., 
sampling could be done faster than 100 Hz to 
compensate for any delay caused by duty cycle slips. 
This occurred because the data acquisition logic required 
the number of samples to be consistent with the desired 
sample rate and length of run where no sampling delays 
occur. Also the timing logic comparing actual time with 
desired time was not a controlling factor after a duty 
cycle slip.  

 Mean Standard Error 

αNC  2.7273 0.0200 

qNC  4.5606 0.0582 
 
Using a single run from the ensemble of runs, 
fictitious data were created with varying time delay. 
Results shown in the table below provide mean values 
for a varying number of sample delays. The first 
column shows the mean value for the case without any 
delay. 

No. of Slips 0 5 10 20 30 
Delay (sec) 0.00 0.05 0.10 0.20 0.30 

αNC  2.7349 2.7314 2.7252 2.7347 2.7441 

qNC  
4.5087 4.4944 4.4862 4.4391 4.0176 

 
Based on these results, estimated coefficients were 

within ±2σ of their correct mean values when delays 
were less than 10 samples. Since 90% of all test runs 
contained delays less than 0.05 seconds or 5 cycle 
slips, it is likely both in-phase and out-of phase 
coefficients for the 2000 experiment are computed 
within an error bound less than ±2σ. This is consistent 
with the intended purpose of the 2000 experiment but 
may not be satisfactory for investigations where 
nonlinear dynamics play a significant role. 

Data, typical of 75% of all cases in this study, are 
shown in Fig. 3 (s726: 1.5 Hz and α0 =10°). In the 
figure, the pitch angle position measurement in the wind 
tunnel (equivalent to angle of attack) is analyzed and 
found to have numerous cases where the sample time is 
not stepping in increments of 0.01 seconds as expected. 
In this example, the δta error is occasionally in the 20% 
to 30% range or 0.002 to 0.003 seconds. Note that no 
visible error appears in the angle of attack time history. 
Fig. 3 also shows another timing metric, δts. In this 
particular experiment, the timing logic requiring a faster 
sample rate to make up missed samples and logic 
requiring the system to “catch up” has the effect of 
canceling any delays that occur. Consequently only for 
this particular experiment does this metric return to zero 
after a delay period. 

 
Input Measurements 

Input tests involve calculation of test metric values 
that should bring attention to faulty input signals and 
errors that may not be immediately visible in a graphic 
representation or in a large data set generated in an 
automated fashion. Graphical tests are always 
included, however, to catch relatively large or obvious 
errors. The numerical values of the test metrics are 
generally very large for cases where the errors become 
visible in a graph. 

The primary input signal for this study was angle 
of attack and it is the only input signal tested in this 
paper. Secondary inputs are temperature and tunnel 
dynamic pressure that had very slow variation and are 
assumed to be constant for these dynamic tests.  

Fig. 4 shows a test case (s768: 1.5 Hz and α0 =35°) 
with timing slips greater than 6 samples. The angle-of-
attack time history reflects this delay and shows 
significant distortion from the expected sinusoidal shape. 
10% of all test runs contained timing delay greater than 
0.05 seconds (5 cycle slips). In this case, the abnormality 
is clearly visible and easily detected and removed with 
only visual inspection. 

Three issues associated with the primary input 
measurement are addressed and then harmonic 
analysis is applied to check the impact of those 
anomalies in input measurement. 

To investigate the impact of duty cycle slip on 
experimental results a fictitious time delay followed by a 
catch-up sequence was added to good data. This created 
a second data set for comparison of in-phase and out-of 
phase coefficients. The test case used 1.5 Hz forced 
oscillation data at α0=10°. Using ensemble-averaged 
data, estimates of mean values and standard deviations 
for this case are given in the below table.  

Effect of Timing Signal Time delay, discussed in 
the earlier section, impacts the angle of attack time 
history by causing a deviation from a single-frequency 
pure sinusoidal waveform (see Fig. 4). Harmonic 
analysis of the input is done to further investigate the 
timing issue.  

Along with the two cases in Figs. 3 and 4, two 
other test cases used for this analysis were individual 
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runs s738 and s815. One duty cycle slip was found in 
s738 while timing slips greater than 9 samples occurred 
more than 10 times in s815.   

A model with the first harmonic is estimated and 
used to compute R2 and s2 from (10) and (7). Computed 
values are shown in the below table.   

Test Case R2 s2 
s726 0.9986 0.0043 
s738 0.9978 0.0143 
s768 0.9954 0.0454 
s815 0.9615 0.4478 

 
With bigger delays in time, R2 value is decreasing 

and s2 value is increasing.  Though the trend makes 
sense, it is much less sensitive than expected for this 
analysis.  This result brought attention to the difference 
in using actual measured time vs. a timing index for 
analysis. The timing index (sampling point number) can 
only be used with the assumption that test data are 
equally spaced in time.  When timing delay is present, a 
legitimate option might be re-sampling to obtain data 
that is equally spaced in time. Computed values with re-
sampled data are shown in the below table.  

Test Case R2 s2 
s726 0.9986 0.0043 
s738 0.9973 0.0203 
s768 0.9850 0.1729 
s815 0.1160 13.6544 

 
Due to a significant distortion in test case s815, R2 is 

far less than 1 with a large error (s2) and implies that the 
model with the first harmonic is inadequate.  For the 
other test cases, the values of R2 and s2 indicate much 
more adequate models have been estimated, although 
sensitivity to the timing errors are not as large as 
expected. Each individual run contained 10 oscillation 
cycles. By using 10 cycles for analysis the effect of the 
timing error was minimized and caused a lack of 
sensitivity to small time delays. Analysis with one cycle 
could show the sensitivity in R2 value but the analysis 
with one cycle is not recommended for this study. So, 
except few extreme cases, analysis indicates the 
estimated models were adequate to explain the data (R2 ~ 
1, s2 << 1) and that the test data is reasonably well 
represented by linear models since a single-frequency 
harmonic was the dominant feature.  

Calibration A second test is a comparison of the 
commanded and measured input signals without the 
hardware in the loop, i.e., without including the test rig 
dynamics. 

A simplified block diagram of test setup is shown 
below and the output of the first conversion (from 
degree to voltage) is directly fed to the input of the 
second conversion (from voltage to degree) as depicted 
with a dashed line.  With a proper conversion, 

commanded and measured input values should be the 
same. 

 
A test case is considered using 1.0 Hz forced 

oscillation data at α0=70°.  The top graph in Fig. 5 
shows an example of commanded and measured angle 
of attack versus sample number index. The second 
plot shows the difference or residuals between these 
two graphs. Besides relatively large residual values, a 
bias error of 4.7° exists and the amplitudes are 
different between the top and bottom of the oscillation 
(6.2459° vs. 6.5102°). This is shown in the bottom 
two graphs by subtracting out the mean angle of attack 
from the top two graphs. This also removes the bias 
between the two plots. These new large residuals 
brought attention to a calibration technique used for 
this experiment. In this case, instead of an exact point-
to-point table look up to convert degree to voltage and 
visa-versa, a 3rd order polynomial approximation was 
used. This approach was intended to save test time but 
the cost was some distortion in the harmonic input 
signal. Deviation from a pure sinusoid introduced 
additional harmonics and biases into the experiment.  

With the same test data, harmonic analysis with the 
first harmonic is used to compute R2 and s2 from (10) 
and (7).  Computed values are presented in the below 
table. 

Mean(α) Amplitude(α) R2 s2 
74.7230° 6.3626° 0.9959 0.0023 

 
With the proper consideration of bias error 

(74.7230-70) and amplitude scaling error (6.3626/5), 
the test data presents reasonably linear dynamics. An 
adequate linear model was obtained with R2 almost 1 
and very small model variance. 

Mechanical Issues The next test considers the 
mechanical system, Test Rig, in the above figure. A 
large “jump” distortion was found in several runs. As 
an example, Fig. 6 (s789: α0 = 45° and f = 1.5 Hz) 
shows the α signal plotted against time in the top 
graph and then the same plot with a zoomed view of 
the distortion in the lower graph. In cases where this 
problem occurred the large jump in α was always 
followed by a large timing error. Jump errors were 
sometimes large enough to observe visually during the 
test. This seems likely to be caused by a mechanical 
system anomaly.   

Another input anomaly that may be caused by the 
mechanical system is input saturation. Since input 
saturation can defeat the planned input spectrum used 
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to excite a dynamic system, it can be an issue for the test 
engineer. Fig. 7 (s217: 0.5 Hz and α0 = 5°) shows this 
issue for the single-frequency forced oscillation 
experiment. The effect of saturation is shown in the plots 
of α, CL, and CN. From other test cases, saturation is 
observed in the low frequency experiments and does not 
appear to be affected by offset angle variation. This may 
imply a mechanical limitation of the test rig, however, 
the exact source of this error has not been identified.  

To investigate the impact of mechanical issues on 
inputs, the same test data, shown in Fig. 6, is used for 
harmonic analysis. With only the first harmonic, 
computed values of R2 and s2 from (10) and (7) are 
shown in the below table.  Since the jump anomaly was 
followed by a time delay, computed values with re-
sampled data are also presented. 

Test Case R2 s2 Note 
0.9926 0.0873 with measured data 

s789 0.9484 0.6949 with re-sampled data
 
For the analysis of input saturation, computed values 

of R2 and s2 from (10) and (7) for a test case s217 (Fig. 
7) are shown in the below table. Similar to the last case, 
the model appears to be adequate. 

Mean(α) Amplitude(α) R2 s2 
5.3657° 5.3591° 0.9974 0.0110 

 
In this section, three issues were addressed and 

harmonic analysis has been applied to assess the impact 
by those issues.  In general, the contribution from a large 
number of repeated cycles in each test case allows 
production of test data that is reasonably acceptable. 
However, these kinds of issues would need to be 
resolved for investigations into nonlinear regimes.  

 
Output Measurements 

After conversion to non-dimensional engineering 
units, aerodynamic total force and moment coefficients 
are direct output measurements. Substantial efforts have 
been made to develop methodology for ensuring data 
accuracy using various statistical measures. For this 
paper, analysis is done with the assumption that the test 
facility has followed recommended procedure6 and 
worked to obtain the accurate data. Even with this 
assumption, it is prudent for the investigator to evaluate 
experimental results. Fairly simple calculations can often 
be used to prevent a variety of errors and minimize data 
uncertainty.  

In this section, a conventional linear aerodynamic 
model is assumed and harmonic analysis is performed on 
angle of attack and force and moment measurements to 
estimate the in-phase and out-of-phase model 
coefficients.  Analysis of repeatability or dispersion of 
the time histories and the in-phase and out-of-phase 

components is investigated using the variance 
expressions given by (19) and (21). 

Aerodynamic Force and Moment Coefficients 
For the total force and moment outputs, mean and 
standard deviation of total aerodynamic loads are 
computed from the 10 repeated single runs.  The 
variance at each time instant is used to compute 
overall variance.  Then, harmonic analysis is applied 
to ensemble average run to estimate aerodynamic 
force coefficients with the parameter covariance 
matrix for the estimated coefficients.   

A co-plot of 10 repeated runs is shown in Fig. 8. 
This case is for oscillations about α0 = 20° and at a 
frequency of 1.1 Hz. CN measurement shows a good 
repeatability, while a degraded repeatability is 
depicted in Cm measurement. This degradation is 
addressed in Ref. [1] and the cause is still unknown.  
A significant anomaly is found in CA measurement. It 
shows a large inconsistency over 10 repeated runs and 
the measurement was dominated by noise.   

As a first test case, the first cycle of CN is used. A 
co-plot of 10 single runs and the corresponding plot of 
computed mean values with 2σ bounds at each time 
instant are depicted in Fig. 9.  Overall variance from 
(20)-(21) is  

         ∑ ×==
i

iE s
N

4-22 100.9939 1s . 

After using only the first harmonic for harmonic 
analysis in (2) to compute an estimate of CN, a co-plot 
of measured CN and estimated CN are also shown in 
Fig. 9 (bottom plot). This figure illustrates the model 
with the first harmonic explains the measured data 
fairly well. Computed values of the parameter 
covariance from (7) for the estimated coefficients is 
           [ ]  100.4224 )(ˆ)(1 4-22 ×=−= ∑ iCiC

N NN
i

Ms . 

In order to investigate other cases, the first cycle of 
Cm from the same test case is used to compute the 
corresponding variances. Then, a different test case 
(1.1 Hz and α0 = 60°) is used to compute variances for 
CN and Cm.  Computed variances with the 
corresponding standard errors are presented in the 
below table. 

1.1 Hz and α0 = 20° 1.1 Hz and α0 =60° deg 
 CN Cm CN Cm 

2
Es    0.9939X10-4   0.2462X10-4   0.5859X10-3   0.7201X10-4 

Es     0.0100   0.0050   0.0242   0.0085 
2
Ms    0.4224X10-4   0.4487X10-5   0.1376X10-3   0.1628X10-4 

Ms    0.0065   0.0021   0.0117   0.0040 
 
sE

2 is a computed variance from repeated runs and 
sM

2 is a computed one from model. Theoretically, the 
two variances are the same if there were no errors in 
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modeling with the first harmonic and if accurate data 
with good repeatability were acquired during 
experiments. In these test cases, with sE

2 greater than 
sM

2, a larger error in test repeatability is implied relative 
to modeling error.   

In-phase and out-of-phase components 
Ensemble Average Runs The conventional procedure 

to obtain a model in forced-oscillation testing is to form 
an ensemble average of repeated runs. Harmonic 
analysis is then used to obtain the parameters in model 
equation (13).  From (18) and (19), in-phase and out-of-
phase components with the corresponding standard 
errors are computed.  Results for normal force 
coefficient, CN, are presented in Tables 1 and plotted 
against the angle of attack in Fig. 10.  

Ten Repeated Single Runs Harmonic analysis is also 
applied to individual runs. For f=1.5 Hz, Fig. 11 shows 
in-phase and out-of-phase components of normal force 
coefficient, with the 2σ bounds, for each of the 10 runs 
against angle of attack. This figure provides repeatability 
and error bound information. Fairly larger deviations are 
shown in Fig. 11 while a good repeatability is observed 
for most test cases. In this case, a test engineer can 
quickly assess progress of the experiment and the 
presence of any outlier results.  
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Outlier Rejection Rules From Ref. [4], when the 
number of repeats (N) is 10, the ratio of maximum 
acceptable deviation to precision index is 1.96 with a 
corresponding probability of 0.95.  Applying 
Chauvenet’s criterion4 to the test case shown in Fig. 11  
(f = 1.5 Hz and α0 = 55°), the outlier screening metric 
(1.96*σ) requires the single run, s815, to be rejected by 
this criterion. As described earlier, s815 has a significant 
timing delay.  In-phase and out-of phase coefficients 
both for all 10 runs and for selected runs (9 runs in this 
case) are computed and shown in the table below. From 
the table, Chauvenet’s criterion successfully removed 
the questionable test data and improved data consistency 
by reducing standard deviations.   

All 10 Runs Selected Runs 
  Mean σ Mean σ 

αNC  1.2603 0.0830 1.2406 0.0582

qNC  4.8351 0.5424 4.9933 0.2224
 

Concluding Remarks 
NASA LaRC has been conducting a series of wind 

tunnel tests to develop and test mathematical models and 
system identification methodology for aircraft rigid-
body aerodynamics in nonlinear unsteady flight regimes. 
Analysis of measurement accuracy, especially for 
nonlinear dynamic systems that may exhibit complicated 
behaviors, is an essential component of this ongoing 
effort. In this paper, tools for harmonic analysis of 

dynamic data and assessing measurement accuracy 
have been presented. A linear aerodynamic model is 
assumed that is appropriate for conventional forced-
oscillation experiments, although more general models 
can be used with these tools. Application of the tools 
to experimental data is demonstrated and results 
indicate the levels of uncertainty in output 
measurements that can arise from experimental setup, 
calibration procedures, mechanical limitations, and 
input errors. During the evaluation, several issues 
have been highlighted: 1) duty-cycle slips in real-time 
experiments, 2) signal-to-noise ratio (SNR), 3) 
calibration, and 4) input design. Suggestions that 
could address these issues have been proposed for 
ensuring high measurement accuracy of future 
experiments.  

Extension of this work may support 
implementation of closed-loop automated testing 
where feedback measurements are analyzed, in real-
time, with the appropriate metrics to produce the 
highest data quality possible during dynamic testing. 
This would provide efficient experimental systems 
that can reduce experimental time and increase 
measurement accuracy.   
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 Figure 2. Proposed timing signal vs. signal with the timing issue. 

 
 
 
 
 

 

 

 

 
Table 1. In-phase and out-of-phase components of CN coefficient. 
 

 

 
 

Figure 1.  Three-dimensional view of 10% F-16 XL model. 
 Figure 3. Typical timing signal of dynamic test data.  
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Figure 6. Jump in Angle of Attack Time History. Figure 4. Dynamic test data with the slippage of duty cycles. 

 
 Figure 7. Saturated Input Command and Corresponding  

CL and CN Time Histories. Figure 5. Measured and Commanded Angles of Attack. 
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Figure 10. Variation of in-phase and out-of-phase components of CN.  

 

                Figure 8. Typical dynamic test data: Ten repeated measurements. 

 Figure 11. Co-plot of 10 single-runs with 2σ bounds of in-phase  
Figure 9. Co-plot of 10 Runs, Mean Values with 2σ bound,  and out-of-phase components of CN for f=1.5 Hz. 
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and Co-plot of Measured CN and Estimated CN. 
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